

PRODUCT CARD

Product data								
Product code	VC05-0036		STK-code	1914132	EAN-code	6410019141320		
Product name	OTL-connector :	1xAl/Cu 240	0mm² (Yellow/Greer	ı)				
Wires	1xAl/Cu 240mn	1²						
Technical data								
Nominal current -	Cu	425	A					
Nominal current	Al	380	A					
Nominal voltage		690	V		-	-		
Max. Current (US) -	Cu	-	A		-			
wax. current (05)	Al	-	A		I N			
Max. Voltage (US)		-	V					
Number of pole		1	pcs					
Max. Cross section		240	mm²					
Tightening torque	35-120 mm²	26	Nm					
	150-240 mm²	40	Nm					
	-	-	Nm					
	-	-	Nm					
Max. Operating temperature		80	°C					
Weight		195	g			(EROHS E		
IP-protection		IP20				C RoHS		
Standards		EN 61238-1;	; EN60947-7-1					
Color/ Material		Green RAL 6018, Yellow RAL 1016/ PA66						
Mounting/ Connection		DIN-rail and	l screw (M5) mounting	B				
Description								

OTL-connectors are designed to be used connecting and branching aluminium and cobber conductors. Bodies are made of tin-plated aluminium.

INSTALLATION GUIDE

roduct data											
Touuci uata											
roduct code	Product name				I _{n Al}	I _{n Cu}	Un	I _{max Al}	I _{max Cu}	U _{max}	
VC05-0034	OTL-connector 1xAl/Cu 240mm ² (Grey)				380 A	425 A	690 V	-	-	-	
VC05-0035	OTL-connector 1xAl/Cu 240mm ² (Blue)				380 A	425 A	690 V	-	-	-	
VC05-0036	6 OTL-connector 1xAl/Cu 240mm ² (Yello			w/Green)	380 A	425 A	690 V	-	-	-	
stallation											
/pe	DIN-rail and	d screw (M5)	mounting								
		See pictu Removin	onnector to re. Push unt g		1	t S	Screw m Jse max. Ø5 i ee picture .	ounting mm screw.			
CEROHS®											
rew		Thread	M20	Tightening to	-	35-120 mm ²		Stripping ler	nght L	30 mm	
sw		SW	8	_	-	150-240 mm ²	40 Nm				
							-			-	
						-	-				
				Max. Wire cr	oss section		240 mm²				
							240 11111				
						Ins	stallation				
26-40 Nm			Can be used for both copper- or aluminium conductors . With the Al-conductors, It's recommended to use anti-corrosion paste. (i.e. Penetrox). It is allowed to use max. of three adjacent cross-sections in one space (Copper conductors). The nominal max. cross-section value must not be exceeded.								
		Nm		recommended It is allowed to conductors). Th	to use anti-c use max. of t ne nominal m	orrosion paste three adjacent nax. cross-secti	e. (i.e. Penetr cross-sectio ion value mu	ns in one spa st not be exc	ace (Copper ceeded.	s, it's	
		Nm		recommended	to use anti-c use max. of t ne nominal m	orrosion paste three adjacent nax. cross-secti	e. (i.e. Penetr cross-sectio ion value mu	ns in one spa st not be exc	ace (Copper ceeded.	5, It's	
		Nm		recommended It is allowed to conductors). Th	to use anti-c use max. of t ne nominal m conductors, i	errosion paste three adjacent hax. cross-secti t is allowed to hen using a fin Each pro	e. (i.e. Penetr cross-sectio ion value mu use only one ne-stranded o	ns in one spa ist not be exc e conductor/ conductor.	ace (Copper ceeded.	/n	
oss-section				recommended It is allowed to conductors). Th When used Al-o	to use anti-c use max. of f ne nominal m conductors, i d a ferrule w	eorrosion paste three adjacent hax. cross-secti t is allowed to hen using a fin Each pro conduct	e. (i.e. Penetr cross-sectio ion value mu use only one ne-stranded o otective cond tor space. SF	ns in one spa ist not be exc e conductor/ conductor.	ace (Copper ceeded. one space.	70	
oss-section 1,5 mm2				recommended It is allowed to conductors). Th When used Al-o We recommen	to use anti-c use max. of f ne nominal m conductors, i d a ferrule w	eorrosion paste three adjacent hax. cross-secti t is allowed to hen using a fin Each pro conduct	e. (i.e. Penetr cross-sectio ion value mu use only one ne-stranded o otective cond tor space. SF	ns in one spa ist not be exc e conductor/ conductor. ductor must S 6000:1999	ace (Copper ceeded. one space.	/n 6	
	of conductors	s and number	of conducto	recommended It is allowed to conductors). Th When used Al-o We recommen	to use anti-c use max. of i ne nominal m conductors, i d a ferrule w	orrosion paste three adjacent hax. cross-secti t is allowed to hen using a fin Each pro conduct	e. (i.e. Penetr cross-sectio ion value mu use only one ne-stranded o otective cond tor space. SF	ns in one spa ist not be exc e conductor/ conductor. ductor must 5 6000:1999 The conduc refer only t	ace (Copper ceeded. one space. have their ow clause 810.2	n f n table	
1,5 mm2	of conductors 2,5 mm2	s and number 6 mm2	of conductor 10 mm2 0	recommended It is allowed to conductors). Th When used Al- We recommen We recommen Ors/ space. (Al- 16 mm2 0	to use anti-c use max. of i ne nominal m conductors, i d a ferrule w d a ferrule w conductors in 25 mm2 0	orrosion paste three adjacent hax. cross-secti t is allowed to hen using a fin Each pro conduct n parenthesis) 35 mm2 3 (1)	e. (i.e. Penetr cross-sectio ion value mu use only one ne-stranded of tor space. SF 50 mm2 3 (1)	ns in one spa ist not be exc e conductor/ conductor. ductor must 5 6000:1999 The conduc refer only t terminals.	ace (Copper ceeded. f one space. have their ow clause 810.2.	n table nstalled	
1,5 mm2	of conductors 2,5 mm2	s and number 6 mm2	of conductor 10 mm2	recommended It is allowed to conductors). Th When used Al- We recommen	to use anti-c use max. of i ne nominal m conductors, i d a ferrule w	Each proceed of the second sec	e. (i.e. Penetr cross-sectio ion value mu use only one ne-stranded o otective cond tor space. SF	ns in one spa ist not be exc e conductor/ conductor. ductor must 5 6000:1999 The conduc refer only t	ace (Copper ceeded. one space. have their ow clause 810.2.	n f n table	